
International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1352
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Converting the transitions between quantum
gates into rotations

Nikolay Raychev

Abstract – This report describes an approach for generation of rotation through quantum operators. The approach of the proposed method
transforms the transitions between quantum gates in rotary operations. Operations with qubits are very similar to the rotation, but with an
added phase coefficient. This fact is used to create a process for rotation between unitary matrices.

Index Terms— boolen function, circuit, composition, encoding, gate, quantum.

—————————— ——————————

1 INTRODUCTION

In the development process of a circuit quantum simulator
[10, 11, 12] was required to seek solutions to approximate the
results of the quantum operations, in order to animate what
occurs without any sharp jumps. The fundamental concept for
realization of the transitions is based on the fact that the quan-
tum operation is always just a unitary matrix, which may be a
linear interpolation between the matrices: 𝑈𝑡 = 𝑈0(1− 𝑡) +𝑈1𝑡.
The operations with single qubits are very similar to the rota-
tions, but with an added coefficient of the phase. This fact will be
used to create a method for transformation of rotational into
qubit operations.

The problem with the linear transformation is that the inter-
mediate matrices may not be valid operations. The linear trans-
formation tends to create a matrix entries, which are too close to
zero, i.e. the resulting matrices will shrink the values instead of
retaining their length (which is not a desired effect, as the whole
point of using unitary matrices is to preserve the length). Actual-
ly, the goal is to be made a transformation without leaving the
space of the unitary matrices. A compact way for the parameteri-
zation of the space of the unitary matrices is:
𝑈 = 𝑒𝜙𝑖�𝐼𝐼 cos(𝜃) + 𝑣�𝜎𝑥𝑦𝑧 sin(𝜃)�

The above equation includes four constants and three varia-
bles. The constants are the identity matrix (𝐼), the square root of
-1 , the constant of Euler (𝑒) and the vector of Pauli matrices
𝜎𝑥𝑦𝑧 . The three variables are the angle 𝜙, the angle 𝜃 and the
single vector 𝑣�. Each of the variables plays a different role. 𝜙 is a
global phase coefficient. It's what distinguishes the group of
unitary matrices U(2) from "the special unitary group SU(2)". 𝑣�
and 𝜃 correspond to a rotation. is like an axis to rotate around,
and 𝜃 is how much to rotate around the said axis. What does it
mean that 𝑣� and 𝜃 are like a rotation? It becomes a bit clearer
when the compact parameterization from above is expanded.
Through incorporation of the Pauli matrices and splitting of 𝑣� in
⟨𝑥|𝑦|𝑧⟩ is obtained:
𝑈 = 𝑒𝜙𝑖 �𝐼 cos(𝜃) �1 0

0 1�+ 𝑥 sin(𝜃) �0 1
1 0�+ 𝑦 sin(𝜃) �0 −𝐼

𝐼 0 � и 𝑧 sin(𝜃) �1 0
0 −1��

This is not yet clear enough. The following part is omitted: the
equation to convert from an axis-angle style rotation to a single
quaternion style rotation:
𝑞 = 𝐼 cos �

𝜃
2�

+ 𝑥 sin �
𝜃
2�
𝐼 + 𝑦 sin �

𝜃
2�
𝑗 + 𝑧 sin �

𝜃
2�
𝑘

The resemblance is visible. Without paying attention to the
mysterious division by 2 of the angles, the Pauli matrices actually
play the role of quaternion constants: 𝐼,𝑗 and 𝑘 If each of the Pauli
matrices is multiplied by , is obtained:

(𝐼𝜎𝑥)2 = (𝐼𝜎𝑦)2 = (𝐼𝜎𝑧)2 = 𝐼3𝜎𝑥𝜎𝑦𝜎𝑧 = −𝐼
This, in turn, looks very similar to the way in which the quaterni-
ons are defined: 𝐼2 = 𝑗2 = 𝑘2=ijk = -1 Why is this similarity with
the rotations important? Because it will be used for linear trans-
formation. There are already existing methods for smooth linear
transformation between quaternions and they will be applied in
order to be handled the rotation part of the unitary operation.
Then for the remaining phase part simply must be interpolated
between two angles.

2 CONVERTING THE TRANSITIONS BETWEEN QUANTUM
GATES IN ROTARY OPERATIONS

First the unitary operation must be broken down into its quater-
nion and phased parts. Let's start by braking down the previous
parameterization of the unitary group into a single matrix:

𝑈 = 𝑒𝜙𝑖 �
𝐼 cos(𝜃) + 𝑧 sin(𝜃) (𝑥 + 𝐼𝑦) sin(𝜃)

(𝑥 − 𝐼𝑦) sin(𝜃) 𝐼 cos(𝜃)− 𝑧 sin(𝜃)�

The values for extraction are the phase 𝜙 and the quaternion
components 𝐼 cos(𝜃) ,𝑥 sin(𝜃) , 𝑦 sin(𝜃) и 𝑧 sin(𝜃) It must be
observed that 𝑥 sin(𝜃)and 𝑦 sin(𝜃) contribute only for the upper
right and lower left part of the matrix. In addition, xsin(𝜃)con-
tributes symmetrically, while 𝑦 sin(𝜃) - asymmetrically. This
allows to be solved their values, although they are still mixed
with the phase, by taking the sum and the difference along the
diagonal. The same applies for 𝑧 sin(𝜃) and 𝐼 cos(𝜃) along the
other diagonal. To eliminate the coefficient 𝑒𝜙𝑖 from the extract-
ed values, is used the fact that it should be the only contributor of
the complex values. Any component from the extracted four
quaternion components can be selected (as long as it's not zero)
and pick a phase coefficient, which will make the chosen compo-
nent real. Since the given matrix certainly is unitary, the same
coefficient of the phase should make the remaining quaternion
components real. Below is given a code, written in python, which
carries out the described factorization:

def quantum_unitary_breakdown(m):
 Breaks an unitary matrix in quaternion and phase components.

 # Extract rotation components
 a, b, c, d = m[0, 0], m[0, 1], m[1, 0], m[1, 1]
 t = (a + d)/2j
 x = (b + c)/2
 y = (b - c)/-2j
 z = (a - d)/2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1353
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 # Extracts common phase coefficient
 p = max([t, x, y, z], key=lambda is: abs(e))
 p /= abs(p)
 pt, px, py, pz = t/p, x/p, y/p, z/p

 q = [pt.real, px.real, py.real, pz.real]
 return q, p

After the problem can be broken down into factors in the rota-
tion and phase parts, and they can be interpolated separately. For
the rotation part will be used a spherical transformation. In or-
der to be interpolated spherically between two points - 𝑝0 and𝑝1
must be found an angle, satisfying cos(𝜃) = 𝑝0 ∙ 𝑝1, and then the
result is:

𝑆𝑆𝑒𝑆𝑝𝑆𝑆𝑆𝑡𝐼𝑆𝑆�𝑝0,𝑝1,𝑡� =
sin(𝜃(1− 𝑡))

sin(𝜃) 𝑝0 +
sin(𝜃𝑡)
sin(𝜃) 𝑝1

The obstacle here is the division by zero, when 𝜃 is zero. Fortu-
nately, because the numerator is approaching zero generally in
the same way as the denominator, this is a case in which the
obtained value does not deviate. A function can be defined, which
calculates sin(𝑥𝑓)

sin(𝑥)
, but switches to an approximation, that does not

divide by zero or increase the errors at floating point numbers,
when they are close to zero:

def quantum_sin_scale_ratio(theta, factor):
Returns sin(theta * factor) / sin(theta) with care around the
origin to avoid dividing by zero.
Near zero, transition to an approximation, to avoid an increase
from error at floating point numbers.
 if abs(theta) < 0.0001:
 # sin(x) = x - x^3/3! + ...
 # sin(f x) / sin(x)
 # = ((fx) - (fx)^3/3! + ...) / (x - x^3/3! + ...)
 # ~= ((fx) - (fx)^3/3!) / (x - x^3/3!)
 # = (f - f(fx)^2/3!) / (1 - x^2/3!)
 # = f (1 - f^2 x^2/6) / (1 - x^2/6)
 d = theta * theta / 6
 return factor * (1 - d * factor * factor) / (1 - d)
 return math.sin(theta * factor) / math.sin(theta)
The above method will be applied at the method for full trans-
formation, when a spherical transformation is being carried out.
In order to make an angular interpolation the obvious shall be
carried out: the difference between the two angles is learned,
care should be taken to recourse to a roundabout way and then a
linear transformation should be made. To take correctly the sign
of the difference is a difficult task, but it is already explained.
When everything is put together, we obtain:

def quantum_unitary_lerp(u1, u2, t):
 Interpolates between two 2x2 unitary NumPy matrices.
 # Split into rotation and phase parts
 q1, p1 = quantum_unitary_breakdown(u1)
 q2, p2 = quantum_unitary_breakdown(u2)
 # Spherical transformation of the rotation
 dot = sum(v1*v2 for v1,v2 in zip(q1, q2))
 if dot < 0:
 # Not to be made in the long way around...
 q2 *= -1
 p2 *= -1

 dot *= -1
 theta = math.acos(min(dot, 1))
 c1 = sin_scale_ratio(theta, 1-t)
 c2 = sin_scale_ratio(theta, t)
 u3 = (u1 * c1 / p1 + u2 * c2 / p2)
 # Angular transformation of the phase
 a1 = np.angle(p1)
 a2 = np.angle(p2)
 # The smallest angular distance with a sign (mod 2pi)
 da = (a2 - a1 + math.pi) % (math.pi * 2) - math.pi
 a3 = a1 + da * t
 p3 = math.cos(a3) + 1j * math.sin(a3)
 return u3 * p3

Demonstration
Below is given a demonstration of the described above method
with the developed by the author of the article quantum simula-
tor. Matrices for start and end can be entered in the text boxes
and (after the entered matrices are adjusted, they should be
unitary) a continuous transition between the two matrices is
shown. It is difficult to be checked ostensibly, whether the inter-
mediate matrices are unitary, but it can be seen that the move-
ment is smooth and the colored area remains relatively constant.

Figure 1: Linear transformation

(Note: The input correction is done by doing a singular value
decomposition and omitting the non-unitary factor. This turns
out to be really effective.).

3 CONCLUSION
Single qubit operations are a lot like rotations, but with an added
phase coefficient. This fact can be used to create a method for
linear transformation between 2 unitary matrices. The method
described above, works, but is not optimal. For example, it does
not ensure a constant angular speed. Also, in some cases it
doesn't take the shortest possible path.

REFFERENCES
 [1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
United Kingdom, 2000).
[2] I. L. Chuang, N. Gershenfeld and M. Kubinec, “Experimental
Implementation of Fast Quantum Searching”, Physical Review
Letters, 80(15), 3408-3411, 1998.
[3] R. Cleve and J. Watrous, “Fast Parallel Circuits for the Quan-
tum Fourier Transform”, Proceedings of IEEE Symposium on the
Theory of Computing, pp. 526-535, 2000.
[4] W. Cooley and J. Tukey, “An Algorithm for the Machine Calcu-
lation of Complex Fourier Series”, Math. Of Computation, 19:297-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 1354
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

301, 1965.
[5] D. Coppersmith, “An Approximate Fourier Transform Useful in
Quantum Factoring”, IBM Research Report RC 19642, 1994.
[6] X. Deng, T. Hanyu and M. Kameyama, “Quantum Device Model
Based Super Pass Gate for Multiple-Valued Digital Systems”, Pro-
ceedings of Intl. Symp. Multiple-Valued Logic, pp. 130-138, 1995.
[7] D. Deutsch, “Quantum Theory, the Church-Turing Principle
and the Universal Quantum Computer”, Proc. Royal Soc. A
400:97-117, 1985.
[8] N. Gershenfeld and I. L. Chuang, “Bulk Spin-Resonance Quan-
tum Computing”, Nature, vol. 404, pp.350-356, 1997.
[9] R. Duan, Z. Ji, Y. Feng and M. Ying, “A Relation Between Quan-
tum Operations and the Quantum Fourier Transform”, Quantum
Physics Archive, arxiv: quant-ph/0304145
[10] L. Hales, “Quantum Fourier Transform and Extensions of the
Abelian Hidden Subgroup Problem”, Ph. D. Dissertation, UC
Berkeley, 2002.
[11] S. L. Hurst, D. M. Miller and J. Muzio, “Spectral Techniques in
Digital Logic”, Academic Press, London, 1985.
[12] R. Jozsa, “Quantum Algorithms and the Fourier Transform”,
Proceedings of Royal Society of London, 454:323-337, 1997.
[13] Nikolay Raychev. Dynamic simulation of quantum stochastic
walk. In International jubilee congress (TU), 2012.
[14] Nikolay Raychev. Classical simulation of quantum algo-
rithms. In International jubilee congress (TU), 2012.
[15] Nikolay Raychev. Interactive environment for implementa-
tion and simulation of quantum algorithms. CompSysTech'15,
DOI: 10.13140/RG.2.1.2984.3362, 2015
[16] Nikolay Raychev. Unitary combinations of formalized classes
in qubit space. In International Journal of Scientific and Engi-
neering Research 04/2015; 6(4):395-398, 2015.
[17] Nikolay Raychev. Functional composition of quantum func-
tions. In International Journal of Scientific and Engineering Re-
search 04/2015; 6(4):413-415, 2015.
[18] Nikolay Raychev. Logical sets of quantum operators. In In-
ternational Journal of Scientific and Engineering Research
04/2015; 6(4):391-394, 2015.
[19] Nikolay Raychev. Controlled formalized operators. In Inter-
national Journal of Scientific and Engineering Research 05/2015;
6(5):1467-1469, 2015.
[20] Nikolay Raychev. Controlled formalized operators with mul-
tiple control bits. In International Journal of Scientific and Engi-
neering Research 05/2015; 6(5):1470-1473, 2015.
[21] Nikolay Raychev. Connecting sets of formalized operators. In
International Journal of Scientific and Engineering Research
05/2015; 6(5):1474-1476, 2015.
[22] Nikolay Raychev. Indexed formalized operators for n-bit
circuits. In International Journal of Scientific and Engineering
Research 05/2015; 6(5):1477-1480, 2015.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Converting the transitions between quantum gates in rotary operations
	3 Conclusion

