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Converting the transitions between quantum 
gates into rotations 

Nikolay Raychev 
 

Abstract – This report describes an approach for generation of rotation through quantum operators. The approach of the proposed method 
transforms the transitions between quantum gates in rotary operations. Operations with qubits are very similar to the rotation, but with an 
added phase coefficient. This fact is used to create a process for rotation between unitary matrices.  

Index Terms— boolen function, circuit, composition, encoding, gate, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     

In the development process of a circuit quantum simulator 
[10, 11, 12] was required to seek solutions to approximate the 
results of the quantum operations, in order to animate what 
occurs without any sharp jumps. The fundamental concept for 
realization of the transitions is based on the fact that the quan-
tum operation is always just a unitary matrix, which may be a 
linear interpolation between the matrices: 𝑈𝑡 = 𝑈0(1− 𝑡) +𝑈1𝑡. 
The operations with single qubits are very similar to the rota-
tions, but with an added coefficient of the phase. This fact will be 
used to create a method for transformation of rotational into 
qubit operations. 

The problem with the linear transformation is that the inter-
mediate matrices may not be valid operations. The linear trans-
formation tends to create a matrix entries, which are too close to 
zero, i.e. the resulting matrices will shrink the values instead of 
retaining their length (which is not a desired effect, as the whole 
point of using unitary matrices is to preserve the length). Actual-
ly, the goal is to be made a transformation without leaving the 
space of the unitary matrices. A compact way for the parameteri-
zation of the space of the unitary matrices is: 
𝑈 = 𝑒𝜙𝑖�𝐼𝐼 cos(𝜃) + 𝑣�𝜎𝑥𝑦𝑧 sin(𝜃)� 

The above equation includes four constants and three varia-
bles. The constants are the identity matrix (𝐼), the square root of 
-1 , the constant of Euler (𝑒) and the vector of Pauli matrices 
𝜎𝑥𝑦𝑧 . The three variables are the angle 𝜙, the angle 𝜃 and the 
single vector 𝑣�. Each of the variables plays a different role. 𝜙 is a 
global phase coefficient. It's what distinguishes the group of 
unitary matrices U(2) from "the special unitary group SU(2)". 𝑣� 
and 𝜃 correspond to a rotation.  is like an axis to rotate around, 
and 𝜃 is how much to rotate around the said axis. What does it 
mean that 𝑣� and 𝜃 are like a rotation? It becomes a bit clearer 
when the compact parameterization from above is expanded. 
Through incorporation of the Pauli matrices and splitting of 𝑣� in 
⟨𝑥|𝑦|𝑧⟩ is obtained: 
𝑈 = 𝑒𝜙𝑖 �𝐼 cos(𝜃) �1 0

0 1�+  𝑥 sin(𝜃) �0 1
1 0�+  𝑦 sin(𝜃) �0 −𝐼

𝐼 0 �  и 𝑧 sin(𝜃) �1 0
0 −1�� 

This is not yet clear enough. The following part is omitted: the 
equation to convert from an axis-angle style rotation to a single 
quaternion style rotation: 
𝑞 = 𝐼 cos �

𝜃
2�

+ 𝑥 sin �
𝜃
2�
𝐼 + 𝑦 sin �

𝜃
2�
𝑗 +  𝑧 sin �

𝜃
2�
𝑘 

The resemblance is visible. Without paying attention to the 
mysterious division by 2 of the angles, the Pauli matrices actually 
play the role of quaternion constants: 𝐼,𝑗 and 𝑘 If each of the Pauli 
matrices is multiplied by , is obtained:  

(𝐼𝜎𝑥)2 = (𝐼𝜎𝑦)2 = (𝐼𝜎𝑧)2 = 𝐼3𝜎𝑥𝜎𝑦𝜎𝑧 = −𝐼 
This, in turn, looks very similar to the way in which the quaterni-
ons are defined:  𝐼2 = 𝑗2 = 𝑘2=ijk = -1 Why is this similarity with 
the rotations important? Because it will be used for linear trans-
formation. There are already existing methods for smooth linear 
transformation between quaternions and they will be applied in 
order to be handled the rotation part of the unitary operation. 
Then for the remaining phase part simply must be interpolated 
between two angles. 

  

2    CONVERTING THE TRANSITIONS BETWEEN QUANTUM 
GATES IN ROTARY OPERATIONS 

First the unitary operation must be broken down into its quater-
nion and phased parts.  Let's start by braking down the previous 
parameterization of the unitary group into a single matrix: 

𝑈 = 𝑒𝜙𝑖 �
𝐼 cos(𝜃) + 𝑧 sin(𝜃) (𝑥 + 𝐼𝑦) sin(𝜃)

(𝑥 − 𝐼𝑦) sin(𝜃) 𝐼 cos(𝜃)− 𝑧 sin(𝜃)� 

The values for extraction are the phase 𝜙 and the quaternion 
components 𝐼 cos(𝜃) ,𝑥 sin(𝜃) , 𝑦 sin(𝜃)  и 𝑧 sin(𝜃) It must be 
observed that 𝑥 sin(𝜃)and 𝑦 sin(𝜃) contribute only for the upper 
right and lower left part of the matrix. In addition, xsin(𝜃)con-
tributes symmetrically, while 𝑦 sin(𝜃) - asymmetrically. This 
allows to be solved their values, although they are still mixed 
with the phase, by taking the sum and the difference along the 
diagonal. The same applies for 𝑧 sin(𝜃) and 𝐼 cos(𝜃) along the 
other diagonal. To eliminate the coefficient 𝑒𝜙𝑖 from the extract-
ed values, is used the fact that it should be the only contributor of 
the complex values. Any component from the extracted four 
quaternion components can be selected (as long as it's not zero) 
and pick a phase coefficient, which will make the chosen compo-
nent real. Since the given matrix certainly is unitary, the same 
coefficient of the phase should make the remaining quaternion 
components real. Below is given a code, written in python, which 
carries out the described factorization:  
 
def quantum_unitary_breakdown(m): 
    Breaks an unitary matrix in quaternion and phase components. 
     
    # Extract rotation components 
    a, b, c, d = m[0, 0], m[0, 1], m[1, 0], m[1, 1] 
    t = (a + d)/2j 
    x = (b + c)/2 
    y = (b - c)/-2j 
    z = (a - d)/2 
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    # Extracts common phase coefficient 
    p = max([t, x, y, z], key=lambda is: abs(e)) 
    p /= abs(p) 
    pt, px, py, pz = t/p, x/p, y/p, z/p 
 
    q = [pt.real, px.real, py.real, pz.real] 
    return q, p 
 
After the problem can be broken down into factors in the rota-
tion and phase parts, and they can be interpolated separately. For 
the rotation part will be used a spherical transformation. In or-
der to be interpolated spherically between two points - 𝑝0 and𝑝1 
must be found an angle, satisfying cos(𝜃) = 𝑝0 ∙ 𝑝1, and then the 
result is: 

𝑆𝑆𝑒𝑆𝑝𝑆𝑆𝑆𝑡𝐼𝑆𝑆�𝑝0,𝑝1,𝑡� =
sin(𝜃(1− 𝑡))

sin(𝜃) 𝑝0 +
sin(𝜃𝑡)
sin(𝜃) 𝑝1 

The obstacle here is the division by zero, when 𝜃 is zero. Fortu-
nately, because the numerator is approaching zero generally in 
the same way as the denominator, this is a case in which the 
obtained value does not deviate. A function can be defined, which 
calculates sin(𝑥𝑓)

sin(𝑥)
, but switches to an approximation, that does not 

divide by zero or increase the errors at floating point numbers, 
when they are close to zero: 
 
def quantum_sin_scale_ratio(theta, factor): 
Returns sin(theta * factor) / sin(theta) with care around the 
origin to avoid dividing by zero. 
# Near zero, transition to an approximation, to avoid an increase 
from error at floating point numbers. 
    if abs(theta) < 0.0001: 
        # sin(x) = x - x^3/3! + ... 
         # sin(f x) / sin(x) 
        # = ((fx) - (fx)^3/3! + ...) / (x - x^3/3! + ...) 
         # ~= ((fx) - (fx)^3/3!) / (x - x^3/3!) 
         # = (f - f(fx)^2/3!) / (1 - x^2/3!) 
         # = f (1 - f^2 x^2/6) / (1 - x^2/6) 
        d = theta * theta / 6 
        return factor * (1 - d * factor * factor) / (1 - d) 
    return math.sin(theta * factor) / math.sin(theta) 
The above method will be applied at the method for full trans-
formation, when a spherical transformation is being carried out. 
In order to make an angular interpolation the obvious shall be 
carried out: the difference between the two angles is learned, 
care should be taken to recourse to a roundabout way and then a 
linear transformation should be made. To take correctly the sign 
of the difference is a difficult task, but it is already explained. 
When everything is put together, we obtain: 
 
def quantum_unitary_lerp(u1, u2, t): 
   Interpolates between two 2x2 unitary NumPy matrices. 
   # Split into rotation and phase parts 
    q1, p1 = quantum_unitary_breakdown(u1) 
    q2, p2 = quantum_unitary_breakdown(u2) 
    # Spherical transformation of the rotation 
    dot = sum(v1*v2 for v1,v2 in zip(q1, q2)) 
    if dot < 0: 
        # Not to be made in the long way around... 
        q2 *= -1 
        p2 *= -1 

        dot *= -1 
    theta = math.acos(min(dot, 1)) 
    c1 = sin_scale_ratio(theta, 1-t) 
    c2 = sin_scale_ratio(theta, t) 
    u3 = (u1 * c1 / p1 + u2 * c2 / p2) 
    # Angular transformation of the phase 
    a1 = np.angle(p1) 
    a2 = np.angle(p2) 
    # The smallest angular distance with a sign (mod 2pi) 
    da = (a2 - a1 + math.pi) % (math.pi * 2) - math.pi   
    a3 = a1 + da * t 
    p3 = math.cos(a3) + 1j * math.sin(a3) 
    return u3 * p3 
 
Demonstration 
Below is given a demonstration of the described above method 
with the developed by the author of the article quantum simula-
tor. Matrices for start and end can be entered in the text boxes 
and (after the entered matrices are adjusted, they should be 
unitary) a continuous transition between the two matrices is 
shown. It is difficult to be checked ostensibly, whether the inter-
mediate matrices are unitary, but it can be seen that the move-
ment is smooth and the colored area remains relatively constant. 

 
Figure 1: Linear transformation 

 
(Note: The input correction is done by doing a singular value 
decomposition and omitting the non-unitary factor. This turns 
out to be really effective.). 

3 CONCLUSION 
Single qubit operations are a lot like rotations, but with an added 
phase coefficient.  This fact can be used to create a method for 
linear transformation between 2 unitary matrices. The method 
described above, works, but is not optimal. For example, it does 
not ensure a constant angular speed. Also, in some cases it 
doesn't take the shortest possible path. 
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